
B e a d  D y n a m i c s  d e m y s t i f i e d  

This talk shall be mostly theoretical, so don’t expect demonstrations and/or experimental setups. 

We shall make use of the notations and some results for the case of a non-tilted axis and no friction 

(𝛼 = 0  and  𝑏 = 0) from the paper:  

“The bead on a rotating hoop revisited: an unexpected resonance” L. Raviola et al, Eur. J. Phys. 38 (2017) 015005  

1. The prototype example 

A small bead of mass m can slide without friction on a circular hoop that is in a vertical plane and has a radius 𝑅0. 

The hoop rotates at a constant rate 𝜔 about a vertical diameter. Find the angle 𝜃 at which the bead is in a vertical 

equilibrium. 

𝑇 =  
1

2
𝑚𝑅0

2(�̇�2 +  𝜔2 sin2 𝜃),   𝑉 = −𝑚𝑔𝑅0 cos 𝜃 ,   ℒ(𝜃, �̇�) = 𝑇 − 𝑉 

𝑈eff(𝜃) = 𝑚𝑅0 (−
1

2
𝜔2𝑅0 sin2 𝜃 − 𝑔 cos 𝜃) 

𝑈eff
′ (𝜃) = 𝑚𝑅0 sin 𝜃 (−𝜔2𝑅0 cos 𝜃 + 𝑔) 

Answer: If  𝜔 ≤ 𝜔𝐶 ≡ √
𝑔

𝑅0
, then we have equilibrium positions  𝜃 = 𝜃∗ for  𝜃∗ = 0 (stable) and  𝜃∗ = 𝜋 (unstable). 

In the case when  𝜔 > 𝜔𝐶   both these equilibrium positions become unstable but we get two new stable ones at  

𝜃∗ = ± |cos−1 (
𝜔𝐶

𝜔
)| 

which break the discrete reflection symmetry of the equations. 

Also: The frequency of oscillations around  𝜃∗ = 0  is determined to be  𝜔0 = √𝜔𝐶
2 − 𝜔2  for small 𝜔. 

Question:  𝑈eff
′′ (𝜃) = 0  when  𝜔 = 𝜔𝐶   and  𝜃 = 0 . Then, how can you argue that we have a stable equilibrium 

in this case? 

Aside: symmetry breaking and other notions 

Suppose we have some symmetry transformations (discrete or continuous) that leave the equations of motion 
invariant. Then the set of all solutions shall be invariant (as a set) under these transformations. Individual solutions 
may be or may not be invariant. In the latter case we may say that we have a loss of a symmetry or symmetry 
breaking.  

It’s intriguing that development of a new theory quite often comes with a different set of symmetry trans-
formations (e.g. Galilean invariance is lost in the relativity theory, being replaced by the Lorenz/Poincare 
invariance; time-reversibility symmetry of an ensemble of finite number of particles is lost in the thermodynamics 
due to its second law.) 

Examples:  

 Press a steel needle (thin cylindrical rod) along the longest axis. At a certain moment the needle shall 
buckle (instead of being compressed further), thus breaking the rotational symmetry around the longest 
axis. 

 Newton/Kepler problem is rotationally invariant but the stable elliptic trajectories of the planets break 
this symmetry as their semi-major axis (or Laplace-Runge-Lenz vector) has a definite direction. It’s ironic 
that this apparent loss of symmetry is connected with the abundance of invariants in this problem. 

Spontaneous symmetry breaking is a well-defined notion in the realm of Quantum field theory and it may only 
exist in systems with infinite degrees of freedom (i.e. fields). There are attempts to define analogous notion for 
the classical mechanics but quite often they employ concepts beyond classical mechanics. 

Situation with the first/second order phase transitions analogies is somewhat similar. These transitions take place 
when the number of particles tends to infinity but some equations describing these phenomena look similar to 
the equations at hand. 

Personally, I’m not in favour of the use of concepts having only superficial similarity with the situation in our 
problem. 



Aside: bifurcations vs potentials 

The notion of a (local) bifurcation could be well defined: 

“A local bifurcation occurs when a parameter change causes the stability of an equilibrium (or fixed 

point) to change.” Wikipedia 

and it is applicable for the problem in hand.  

The question which is open for debate is whether it provides a really good insight into the physics of the problem. 
Bifurcation diagrams are fine but, personally, I’d find a plot of the (effective) potential as a function of 𝜔 to be a 
better aid for the physicists’ intuition about the specifics of the problem. 

Aside: Lagrangian approach 

University textbooks and scholarly papers often employ the Lagrangian approach in order to obtain laws of 
motion. Having a Lagrangian function  ℒ(𝑞𝑖, 𝑞�̇�) = 𝑇 − 𝑉  i.e. the difference of the kinetic and potential energies, 
one can easily obtain (in the simplest case) the equations of motion:  

𝜕ℒ

𝜕𝑞𝑖
=

𝑑

𝑑𝑡
 
𝜕ℒ

𝜕�̇�𝑖
  

Generalised coordinates 𝑞𝑖 characterize the position of the dynamical system and their time derivatives 𝑞�̇� are the 
generalized velocities. Lagrangian equations have the same form independently of the choice of generalised 
coordinates. Additional terms may arise if there are non-conservative forces or constraints.  

Exercise 1: Obtain the equations of motion for a pendulum in terms of the following generalised coordinates 
measuring the displacement from the equilibrium: vertical shift, horizontal shift, length of the arc traversed, 
deflection angle. 

Suppose that the bob of the pendulum rotates around the vertical axis. To what extent shall we have similar 
equations or identical situation as in the prototype example? 

2. IYPT problem specifics 

 FINITE SIZE BALL VS POINTLIKE BEAD 

 GROOVE VS WIRE HOOP 

 ROLLING VS SLIDING – HOW SHALL THIS AFFECT INERTIAL PROPERTIES OF THE BODY? 

 FRICTION 

3. Equilibrium positions, stability 
A natural first step would be to analyse which equilibrium positions shall survive, which shall alter their stability, 
which shall move somewhat? (E.g. shall  𝜃∗ = 𝜋  still be in the list of equilibrium positions?) 

4. Oscillations around stable equilibrium positions 
One possible next step is to investigate the oscillations around the stable equilibrium positions. That’s why we 
shall make a brief digression into some theoretical aspects of oscillations. 

5. Small oscillations theory 
Suppose we have a simple one-dimensional dynamical system (without drag or friction) of a point mass in a 
potential well, such that there is a stable equilibrium at the bottom. Let’s choose a generalised coordinate 𝑞, such 
that it is zero at the bottom and let the Lagrangian have the form: 

ℒ(𝑞, �̇�) =
1

2
𝑀�̇�2 − 𝑈(𝑞) 

In almost all cases 𝑈(𝑞) could be approximated near the bottom by a quadratic function, say   

𝑈(𝑞) ≈
1

2
𝐾𝑞2  for small 𝑞. 

Then the Lagrangian ℒ(𝑞, �̇�) =
1

2
𝑀�̇�2 −

1

2
𝐾𝑞2 yields equation of motion which describe harmonic oscillations 

with frequency  𝜐 = √
𝐾

𝑀
  and this frequency shall be independent of the amplitude (as long as it remains small).  

Exercise 2: Calculate the frequency of small oscillations for the case of Exercise 1 and check whether we shall have 
equal frequencies for all generalised coordinates. 



Exercise 3: Calculate the frequency of small oscillations around  𝜃∗ = cos−1 (
𝜔𝐶

𝜔
)  for the case of large  𝜔  in the 

prototype example. 

This approximation provides a useful and simple method to tackle numerous engineering problems. When we 
have a dynamical system with N  degrees of freedom around a stable equilibrium, then we have an even stronger 
result – the motion shall be a sum of N  independent harmonic oscillations. This means that the effects of whatever 
coupling between the different degrees of freedom tend to disappear for small oscillations. (One should be 
warned that the coordinates along which we shall have independent harmonic oscillations may not be the 
coordinates we have chosen at the beginning but rather some linear combinations of them.) 

6. Large oscillations theory 
If we are interested in oscillations which are large enough and for which the quadratic approximation is no more 
adequate, then we still have an easy way to obtain the period of these oscillations. Starting from the equation for 

the energy of the system: 𝐸 =
1

2
𝑀�̇�2 + 𝑈(𝑞)  we obtain  �̇� = √2(𝐸−𝑈(𝑞)) 

𝑀
  and  𝑑𝑡 = √

𝑀

2(𝐸−𝑈(𝑞))
𝑑𝑞 

Integrating from  𝑞1  to  𝑞2 – the turning points where  �̇� = 0  we shall obtain the semiperiod of these oscillations 
as a function of the value of the energy 𝐸 i.e.  

𝑇 = ∫ √
2𝑀

(𝐸 − 𝑈(𝑞))
𝑑𝑞

𝑞2

𝑞1

 

This integral might not be solvable in elementary functions but one can always evaluate it numerically. 

Exercise 4: Redo Exercise 2 for large oscillations and compare the results.  

7. What is the friction? 
The prototype example was about an ideal case without drag or friction. The paper cited assumes a friction force 
proportional to the velocity after referring to: “Coulombʼs law for rolling friction” R. Cross, Am. J. Phys. 84 (2016) 221 

Do you agree that the arguments for such an assumption are strong enough? (One may find some papers which 
analyse a similar problem with dry friction.) 

Or, maybe, you have to make an experiment in order to investigate what is the friction in your setup? 

8. What can you do 
Obviously, you can start with checking on your setup where the stable equilibrium positions are for different 𝜔 
and what the frequencies of oscillations around them are. Compare the results with your predictions. 

You may try to determine what the friction force is for your setup (and even try to investigate how it depends on 
velocity). Explore how oscillations slow down and whether this decay is compatible with the friction determined. 

At the end, you may investigate what happens when we provide the ball with large initial velocity. 

9. Sophistications 
If you are more mathematically inclined, then you might like to try Lagrangian dynamics with constraints when 
tackling these topics: 

 Rolling without sliding of the ball on the groove 

 Reduction of dynamics on a sphere 𝕊 2 (i.e. all possible positions of the ball) to a circle 𝕊1 (i.e. the positions 
on the hoop) 

What shall change if we have a weak motor with constant torque (instead of ω = const), or constant angular 
momentum of the system ball & hoop? 

10. Quiz 
What’s the most important difference between the IYPT problem and the prototype example from physicist’s 
point of view? 

How many dimensionless parameters we have here? 

Do we have mass (in)dependence here? 

What about equilibrium positions for  |𝜃| >  
1

2
𝜋 ? 
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