

3. PROXIMITY SENSOR

Márton Gyulai

Physics BSc student at Eötvös Loránd University, Budapest, Hungary

Proximity Sensor

A simple passive inductive sensor can detect ferromagnetic objects moving through its magnetic field. Construct such a passive sensor and investigate its characteristics such as sensing range.

DEMONSTRATION

BASIC EXPLANATION

I. effect – **Eddy currents**

II. effect - Magnetization of the ferromagnetic material

 Φ increases \Rightarrow $L = \frac{\Phi}{I}$ increases \Rightarrow **frequency** decreases

Hysteresis loop of magnetization

Distance: long

Amplitude: large

Phase difference: small

Distance: middle

Amplitude: middle

Phase difference: middle

Distance: short

Amplitude: small

Phase difference: large

POSSIBLE THEORETICAL CONSIDERATIONS

I., Using power dissipation of Eddy currents

$$P = \frac{\pi^2 B^2 d^2 f^2 V}{6\rho k}$$

P is the power lost (W),

B is the peak magnetic field (T),

d is the thickness of the sheet or diameter of the wire (m),

f is the frequency (Hz),

k is a constant (1 - thin sheet, 2 - thin wire)

 ρ is the resistivity of the material (Ω m)

V is the volume of the material (kg/m3).

The **voltage** and **current** of the inductor: $U(t) = U_0 \cdot \sin \omega t$ $I(t) = I_0 \cdot \cos \omega t$

$$P = \frac{\pi^2 B^2 d^2 f^2 V}{6\rho k} = c_1 \cdot B^2 = c_1 \cdot c_2 \cdot I_0^2 \cdot \cos^2(\omega t)$$

 c_2 depends on the distance of the target! $c_2(d)$

Energy loss due to eddy currents in a quarter cycle:

$$W_{loss} = \frac{\pi c_1 c_2}{4\omega} \cdot I_0^2 = K \cdot I_0^2$$

K depends on the distance of the target! K(d)

Inductor's change of energy:

$$\Delta W_{ind} = W_0 - W' = \frac{1}{2}LI_0^2 - \frac{1}{2}LI'^2 = \frac{1}{2}L(I_0^2 - I'^2)$$

$$W_{loss} = \Delta W_{ind} = \frac{1}{2}L(I_0^2 - I'^2) = K \cdot I_0^2$$

$$\frac{I'}{I_0} = \sqrt{1 - \frac{\pi c_1 c_2}{2L\omega}}$$

Measured decrease:

$$\frac{I_1}{I_0} = \frac{3.6}{4.4} = 0.82 \pm 0.08$$

Theoretical:

$$\frac{I_1}{I_0} = \sqrt{1 - \frac{\pi c_1 c_2}{2L\omega}} = \sqrt{1 - \frac{\pi^2 d^2 f V \mu_0 \mu_r n}{24k\rho L}} = 0.966$$

$$d \to 0.01 \, m, f \to 100 \, \frac{1}{s}, V \to 0.06 \cdot 0.02 \cdot 0.01 m^3, \rho \to 9.7 \cdot 10^{-8} \Omega m, k \to 1, L \to 4.5 \, \text{H}, \mu_r \to 50, N \to 1200,$$

II., Change of inductance

 Φ increases $L = \frac{\Phi}{I}$ increases Φ decreases

Hysteresis loop of magnetization

Magnetic field strength at the end of a solenoid:

$$H = \frac{IN}{l} \cdot \frac{l}{2\sqrt{r^2 + l^2}} \qquad B_{\text{magnet}} \qquad \Delta \Phi = N \int B_{\text{magnet}} dA$$

$$\Delta \Phi = N \int B_{\text{magnet}} dA$$

magnetic flux change inside the solenoid

M magnetization

$$L = \frac{\Phi + \Delta\Phi(d)}{I} = \frac{\mu N^2 A}{l} + \frac{\Delta\Phi}{l} = L_0 + \frac{\Delta\Phi}{l}$$

LC circuit:

$$L = L_0 + \frac{\Delta \Phi}{I}$$

$$\omega = \sqrt{\frac{1}{LC}} = \sqrt{\frac{1}{C(L_0 + \frac{\Delta\Phi}{I})}} < \omega_0$$

 $\Delta\Phi$ is dependent on the distance of the subject (d)!

$$d_1 < d_2 \rightarrow \Delta \Phi_1 > \Delta \Phi_1$$

Given the $\delta\omega$ (the **precision** of the measuring device) a formula for **sensing range** can be calculated.

SETUP

Air Coil

- + light, stable, durable
- + no hysteresis loss
- limited sensitivity (low inductance)

Single-coil sensor

Three mutually perpendicular coils

Ferromagnetic core

- + higher sensitivity
- less stable, nonlinear
- more energy loss

Measuring frequency $(f) \rightarrow$ reaches threshold value \rightarrow LED turns on

SOURCES, REFERENCES

- Winncy Y. Du, Resistive, Capacitive, Inductive, and Magnetic Sensor Technologies,
 Chapter 4 Inductive Sensors
- What is an Inductive Proximity Sensor? (available at: https://www.keyence.com/ss/products/sensor/sensorbasics/proximity/info/)
- S. Tumanski, Induction Coil Sensors (available at: http://www.tumanski.x.pl/coil.pdf)
- Griffiths D. J., Introduction to Electrodynamics, Cambridge University Press, 2017.

THANK YOU FOR YOUR ATTENTION.

^{*} SUS304 has an intermediate property.

Figures from <a href="https://www.keyence.com/ss/products/sensor/

The **voltage** and **current** of the inductor: $U(t) = U_0 \cdot \sin \omega t$ $I(t) = I_0 \cdot \cos \omega t$

$$P = \frac{\pi^2 B^2 d^2 f^2 V}{6\rho k} = c_1 \cdot B^2 = c_1 \cdot c_2 \cdot I_0^2 \cdot \cos^2(\omega t)$$

Energy loss due to eddy currents in a quater cycle:

$$W_{\frac{1}{4}loss} = \int_{-\frac{\pi}{2\omega}}^{0} P \cdot dt = c_1 \cdot c_2 \cdot I_0^2 \int_{-\frac{\pi}{2\omega}}^{0} \cos^2(\omega t) \cdot dt = \frac{\pi c_1 c_2}{4\omega} \cdot I_0^2$$

Inductor's change of energy meanwhile:

$$\Delta W_{ind} = \frac{1}{2}LI_1^2 = \frac{1}{2}LI_0^2 - W_{\frac{1}{4}loss} = I_0^2(\frac{1}{2}L - \frac{\pi c_1 c_2}{4\omega})$$
$$\frac{I_1}{I_2} = \sqrt{1 - \frac{\pi c_1 c_2}{2I\omega}}$$