10. Nejasný smer

Ak rozkotúlame prstenec v parabolickej miske, môže sa začat́ zaujímavo pohybovat́. Preskúmajte tento jav.

10. Spin Drift

When a ring is set to roll in a parabolic bowl, interesting motion patterns may arise. Investigate this phenomenon.

Showcase

- www.instagram.com/p/B8cGD6tBoFU/
- www.youtube.com/watch?v=Eb-9w2AMvpw

Essence of the problem

- Basically purely mechanical problem
- Approximations to consider
- Ring always touches the round
- Ring does not slip
- Ring does not crash to the ground
- Coefficient of restitution
- The bowl is large enough

Position of the ring

- Position of the center of mass
- x, y, z
- R, theta, z
- Orientation of the ring (riadus \mathbf{r})
- Phi and psi
- Third angle irrelevant
- One boundary condition - touching the ground
- Condition on z, highly nontrivial

Movement of the ring

- Speed of the center of mass
- $\mathbf{v}_{\mathbf{x}}, \mathbf{v}_{\mathbf{y}} \mathbf{v}_{\mathbf{z}}$
- $\dot{R}, \dot{\phi}, v_{z}$
- Orientation of the ring
- $\dot{\varphi}$ and $\dot{\psi}$
- The rotational speed is relevant here, ω
- Four boundary conditions
- Touching the surface of the bowl (two)
- No-slipping (two)

Energy of the ring

- Kinetic energy (mass of the ring m)

$$
E_{k}=\frac{1}{2} m\left(v_{x}{ }^{2}+v_{y}{ }^{2}+v_{z}^{2}\right)=\frac{1}{2} m v_{z}{ }^{2}+\frac{1}{2} m \dot{R}^{2}+\frac{1}{2} m R^{2} \dot{\phi}^{2}
$$

- Potential energy

$$
E_{p}=m g z
$$

- Rotational energy

$$
E_{\text {rot }}=\frac{1}{2} m R^{2}\left(\omega^{2}+\frac{2}{\pi}\left(\dot{\psi}^{2}+\dot{\varphi}^{2}\right)\right)
$$

Solution

- Impossible in the simple energy / force picture
- No approximations seem to make any sense
- Except of flat surface
- That seems to be to far away from the task statement
- All or nothing type of problem
- Only almost full solution possible

Full solution (no slip)

- Lagrangian

$$
L=T-V=E_{k i n}-E_{p o t}
$$

- Set of Lagrange equeations
$\frac{\partial L}{\partial q}-\frac{\mathbf{d}}{\mathbf{d} t} \frac{\partial L}{\partial \dot{q}}+\sum_{i=1}^{5} \lambda_{i} \frac{\partial f_{i}}{\partial q}=0$
- \mathbf{q} are coordinates and \mathbf{f} boundary conditions
- You do not need to solve the boundary conditions separately

Full solution (slip)

- Numerical simulation
- Take care about aggregation of imperfections

Experiment

- Hard surface and ring
- Steel
- Ceramics?
- Narrow and thin ring
- Rounded edge, if possible
- High speed recording of the movement
- More than one camera, if possible
- Color marks on the ring

What to do - Minimum

- Prepare a reasonable experiment
- Find a reasonably stable way of starting it
- Find some reproducible, yet interesting paths of the ring

What to do - higher level

- Simulate the problem or
- Put down the Lagrange equations and numerically solve them
- Relate at least qualitatively these results to your experiment

What to do - IYPT champions

- High quality experiment
- Automated tracking system allowing data gathering
- Low energy loss
- Reproducible starting
- Account for loss of energy
- Rolling friction
- Slip
- Crash - coefficient of restitution
- Quantitative agreement between theory and experiment

