BOHDAN GLISEVIC

DYNAMIC HYDROPHOBICITY

When a drop of liquid impacts on a horizontally moving surface, the droplet may be reflected or not, depending on the <u>speed</u> of the surface. Investigate the interaction between a moving surface and a liquid drop.

BASIC UNDERSTANDI NG

BASIC UNDERSTANDING WETTABLITY 0 0

hydrophilic

hydrophobic

superhydrophobic

Should we expect similar behaviour?

Maybe, but it will be rare...

Dependence on:

surface material surface tension of the liquid gas surrounding liquid and surface

θ >11500°

BASIC EXPLANATION SPEED OF THE SURFACE

Might be reflected or splashed

APPARATUS

APPARATUS

pipette

You can reuse the old setup from Problem No.13 of IYPT 2020 (Friction Oscillator)

Second Option:

THEORY

Let us make some key assumptions!

THEORETICAL MODEL Stationary Surface

THEORETICAL MODEL Moving Surface

THEORETICAL MODEL Radius

$$F(t) \equiv R \left[\left[1 - \exp\left(\left(\frac{2(N_{1}Q_{G} + \rho g_{G})}{R_{R}^{\frac{12}{12}}} \frac{\rho g_{G}}{9 R_{R}^{\frac{16}{16}}} \right) \frac{24\lambda N^{4} t}{\pi_{\pi}^{2} \eta_{\eta}} \right) \right]^{\frac{1}{6}}$$

EXPERIMEN TS

1] H.Almohammadi, A.Amirifazli, 'Understanign the drop impact onto a moving hzdrophilic and hydrophobic surfaces', Department of Mechanical Engineering, York University, Toronto

0m/s<v_s<17m/s

in paper [1]

try to focus on the boundary velocities when creating phase diagrams

Velocity of the Drop - v_N

Change initial height of the drop (pipette) – free fall

$$v_{N} = \sqrt{2gh}$$

Wettability of the Surface

Use variety of different surfaces and determine wettability by measing contact angle for stationary surface for particular liquid

Hydrophilistaislandess steet 40°

Use impregnation spray

Hydropinobice for 110°

EXPERIMENTS

Surface Tension - γ

Use detergent to change surface tension of the water dynamic viscosity and density should not be affected significantly

Dynamic Viscosity - η

Use glycerol to effectively change dynamic viscosity of the water in paper [1]

Table 1. Physical properties of the working fluids

Liquid name	Percentage of glycerol (wt %)	Density ρ (kg/m ³) ²⁵	Surface tension σ $(mN/m)^{25}$	Dynamic viscosity μ (mPa.s) ²⁶
Water	0	998.2	71.7	1.005
Mixture 1	24	1057.2	70.6	2.025
Mixture 2	42	1104.7	69.2	4.106

EXPERIME NTS Statistical Phase Diagrams

EXPECTATIO NO SERVICIO NO SERV

EXPECTATIO NS 1 BEGINNERS

- - Velocity of the droplet (height of the pipette)
 - Surface tension
 - Dynamic viscositty
 - Material of the surface (wettability))
 - Size of the droplet
- Quantify wettability (by measing contact angle ∅)
- Create statistical phase diagrams
- Provide qualitative explanation behind behaviour of the droplet (Why?)
- Ability to control size of the droplets (good pipette)
- Uncertainties in the measurement (essential for this problem)
 - one experiment is certainly not sufficient for overall understanding
- Always previde proofs of your ideas of explanation (HFR video)

EXPECTATIO NS 2 ADVANCED

- Provide quantitative analysis of the experiment
 - Look at the behaviour of the droplets change of lamella shape
 - Length of the upstream and downstream of the droplet for various velocities
- Quantitative model describing change of contact angle
- Phase diagnams with change of the droplets maximum diameter and analysis of critical of aritical diameter
- Try to combine parameters of the liquid into one crucial parameter (try dimensionless numbers in hydro physics Weber's Number, Bond Number, Reynolds number, but justify their applicability
- Provide quantitative theory and give predictions based on initial parameters

THANK YOU